Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS ES T Eng ; 3(10): 1424-1467, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854077

RESUMO

Municipal and agricultural organic waste can be treated to recover energy, nutrients, and carbon through resource recovery and carbon capture (RRCC) technologies such as anaerobic digestion, struvite precipitation, and pyrolysis. Data science could benefit such technologies by improving their efficiency through data-driven process modeling along with reducing environmental and economic burdens via life cycle assessment (LCA) and techno-economic analysis (TEA), respectively. We critically reviewed 616 peer-reviewed articles on the use of data science in RRCC published during 2002-2022. Although applications of machine learning (ML) methods have drastically increased over time for modeling RRCC technologies, the reviewed studies exhibited significant knowledge gaps at various model development stages. In terms of sustainability, an increasing number of studies included LCA with TEA to quantify both environmental and economic impacts of RRCC. Integration of ML methods with LCA and TEA has the potential to cost-effectively investigate the trade-off between efficiency and sustainability of RRCC, although the literature lacked such integration of techniques. Therefore, we propose an integrated data science framework to inform efficient and sustainable RRCC from organic waste based on the review. Overall, the findings from this review can inform practitioners about the effective utilization of various data science methods for real-world implementation of RRCC technologies.

2.
Environ Sci Technol ; 56(23): 17256-17265, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36409840

RESUMO

Increasingly stringent limits on nutrient discharges are motivating water resource recovery facilities (WRRFs) to consider the implementation of sidestream nutrient removal or recovery technologies. To further increase biogas production and reduce landfilled waste, WRRFs with excess anaerobic digestion capacity can accept other high-strength organic waste (HSOW) streams. The goal of this study was to characterize and evaluate the life-cycle global warming potential (GWP), eutrophication potential, and economic costs and benefits of sidestream nutrient management and biosolid management strategies following digestion of sewage sludge augmented by HSOW. Five sidestream nutrient management strategies were analyzed using environmental life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) for codigestion of municipal sewage sludge with and without HSOW. As expected, thermal stripping and ammonia stripping were characterized by a much lower eutrophication potential than no sidestream treatment; significantly higher fertilizer prices would be needed for this revenue stream to cover the capital and chemical costs. Composting all biosolids dramatically reduced the GWP relative to the baseline biosolid option but had slightly higher eutrophication potential. These complex environmental and economic tradeoffs require utilities to consider their social, environmental, and economic values in addition to present or upcoming nutrient discharge limits prior to making decisions in sidestream and biosolids management.


Assuntos
Fertilizantes , Esgotos , Esgotos/química , Biossólidos , Biocombustíveis , Nutrientes , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Anaerobiose
3.
Environ Technol ; : 1-9, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36161873

RESUMO

A number of existing and emerging technologies can recover nitrogen from urine. A preliminary step in many nitrogen recovery processes is hydrolyzing urea to ammonium, a biologically-mediated process that can take days to weeks without intervention. The ability to achieve urea hydrolysis quickly and reliably would increase the feasibility of decentralized nitrogen recovery, especially where space and treatment time are constrained. The goal of this research was to determine whether urea hydrolysis could be accelerated by providing an inoculum containing microorganisms likely to have urease activity (feces or soil), providing a carrier to support attached growth (plastic carriers, granular activated carbon, or no carrier), and modifying the hydraulic retention time (HRT; 1.3, 2, and 4 days) and feeding frequency (Δt = 4, 24 h). Inoculated reactors achieved significantly more urea hydrolysis, and reactors inoculated with soil were able to sustain higher urea hydrolysis rates over time than those inoculated with feces. The mean zero-order rate constants (mM/hr) for reactors with a soil inoculum (15.1) were about three times higher than that of reactors with an inoculum of feces (4.9). A reactor with GAC and an inoculum of soil fed daily with fresh urine achieved greater than 90% hydrolysis with an HRT of 2 days; results suggest the HRT could be reduced to 16 h without reducing performance. No significant benefit was provided by increasing the frequency of feedings for the same HRT, likely because urease enzymes were saturated and operating at maximum hydrolysis rates during most of the reaction period.

4.
Water Res ; 206: 117717, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634641

RESUMO

Diversion of organic waste from landfills offers an opportunity to recover valuable nutrients such as nitrogen and phosphorus that are typically discarded. Although prior research has explored the potential for buildout of anaerobic digestion (AD) infrastructure to treat organic waste and generate energy, a better understanding is needed of the nutrient recovery potential from the solid and liquid byproducts (digestate) resulting from AD of these waste streams. We quantified the system-wide mass of nutrients that can potentially be recovered in California by integrating current and potential future AD facilities with existing nutrient recovery technologies. Based on a profitable build-out scenario for AD, the potential for nitrogen and phosphorus recovery by mass was greatest from municipal sewage sludge. The nutrient recovery (% total mass) was determined for three different end products for the combined organic waste streams: liquid fertilizer [38% of the total recovered nitrogen (TN)], struvite [50% TN, 66% total phosphorous (TP)], and compost (12% TN, 34% TP). Based on the profitable build-out scenario of AD facilities in California, the recovered nutrients would offset an estimated 11% of TN and 29% of TP of in-state synthetic fertilizer demand, whereas a scenario in which all technically recoverable biomass is collected and treated could offset 44% of TN and 97% of TP demand.


Assuntos
Fertilizantes , Fósforo , Anaerobiose , Nitrogênio/análise , Nutrientes , Esgotos , Estruvita , Eliminação de Resíduos Líquidos , Águas Residuárias
5.
Environ Eng Sci ; 38(5): 310-319, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34079204

RESUMO

A growing world population with increasing levels of food consumption will lead to more dairy and swine production and increasing amount of manure that requires treatment. Discharge of excessive nutrients and carbon in untreated animal manure can lead to greenhouse gas emissions and eutrophication concerns, and treatment efforts can be expensive for small scale farmers in marginalized communities. The overall goal of this study was to determine the environmental and economic sustainability of four animal manure management scenarios in Costa Rica: (1) no treatment, (2) biodigesters, (3) biodigesters and struvite precipitation, and (4) biodigesters, struvite precipitation, and lagoons. Life cycle assessment was used to assess the carbon footprint and eutrophication potential, whereas life cycle cost analysis was used to evaluate the equivalent uniform annual worth over the construction and operation and maintenance life stages. Recovery of biogas as a cooking fuel and recovery of nutrients from the struvite reactor reduced the carbon footprint, leading to carbon offsets of up to 2,500 kg CO2 eq/year. Offsets were primarily due to avoiding methane emissions during energy recovery. Eutrophication potential decreased as resource recovery processes were integrated, primarily due to improved removal of phosphorus in effluent waters. Resource recovery efforts led to equivalent uniform annual benefits of $825 to $1,056/year, which could provide a helpful revenue source for lower-income farmers. This research can provide clarity on how small-scale farmers in marginalized settings can utilize resource recovery technologies to better manage animal manure, while improving economic and environmental sustainability outcomes.

6.
J Environ Manage ; 267: 110626, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421668

RESUMO

The efficiencies of removing or recovering nitrogen and phosphorus in widely implemented small-scale tubular anaerobic digesters are not well understood, as the technology is primarily promoted for its recovery of energy, not nutrients. The purpose of this study was to use nutrient mass balances to assess the fate of nitrogen and phosphorus in two tubular anaerobic digesters, specifically designed to digest animal manure, that were integrated with a conical batch reactor to precipitate struvite (MgNH4PO4) from the digester effluent. The field study showed that locally available products, bittern and soda ash, can be used as a magnesium source and for pH adjustment (respectively) in the struvite precipitation reactor. Results from the mass balances showed that PO43- and NH4+ were released from the manure during anaerobic digestion, increasing the concentrations of PO43- and NH4+ in the liquid phase (by 130% and 120%, respectively). Despite this increase in liquid-phase concentrations, average removals were 25% for total phosphorus and 4% for total nitrogen via sedimentation in the digesters. The digesters also removed an average of 87% of total suspended solids and 84% of chemical oxygen demand from the influent waste stream. During struvite precipitation, an average of 79% of PO43--P and 14% of NH4+-N was removed from the digester effluent. Harvested precipitate comprised (by mass) 9.9% Mg, 2.4% N, and 12.8% P, consistent with struvite formation. The treatment system offers dual benefits: improved sanitation and recovery of nutrients as a fertilizer that may also indirectly reduce surface water and groundwater degradation. Quantifying nutrient recovery from small-farm-generated agricultural waste and understanding recovery mechanisms can improve environmental management and facilitate progress toward the achievement of multiple Sustainable Development Goals by improving sanitation, promoting sustainable management of wastes and natural resources, improving food security, and supporting the ecological restoration of local agroecosystems.


Assuntos
Gerenciamento de Resíduos , Animais , Esterco , Nitrogênio , Nutrientes , Fosfatos , Fósforo , Estruvita , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...